Tropospheric Emissions: Monitoring of Pollution (TEMPO)
Chance, Kelly1; Liu, Xiong1; Suleiman, Raid1; Flittner, David2; Al-Saadi, Jassim2; Janz, Scott3
1Harvard-Smithsonian Center for Astrophysics, UNITED STATES; 2NASA Langley Research Center, UNITED STATES; 3NASA Goddard Space Flight Center, UNITED STATES

TEMPO has been selected by NASA as the first Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.

TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.

TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary data set.

TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation.